
iiRDS Plugin for the DITA Open Toolkit

Contents

Introduction... 3

Requirements...3

Install the iiRDS plugin offline... 4

Install the iiRDS plugin from the DITA-OT registry..4

Build and check an iiRDS package.. 4

Architecture... 5
Metadata extraction...6
Metadata mapping...7
Behavior of the default metadata handler.. 9
Plugin parameters..9
Unique identifiers..11

Customization..11
IRI and metadata handlers..12
Customize metadata extraction...12
Customize IRI generation...13
Customize HTML5 output..13

License and contact information...14

 | Introduction | 3

Introduction

The plugin org.iirds.dita.package for the DITA Open Toolkit (DITA-OT) generates iiRDS packages from a DITA map
or a single topic.

iiRDS is a standard for the delivery of intelligent information in the scope of user assistance for products.
The information is provided with the product for the purpose of assisting the users in setting up, operating,
and maintaining the product. Intelligent information is defined as technical documentation content
enriched with metadata.

iiRDS consists of:

• A vocabulary for the metadata provided with the content. The vocabulary is specialized for and
restricted to the domain of technical documentation or user assistance. iiRDS uses an RDF schema as
technical format. RDF stands for Resource Description Framework and is a standard model for data
interchange on the Web.

• A package format for the exchange of packages with intelligent information between different
systems, for example, web portals or content delivery servers. The package format uses ZIP and has a
predefined folder structure for content and metadata in RDF format.

For details about the iiRDS standard, see https://www.iirds.org

To create iiRDS packages from DITA, this plugin uses a predefined mapping of DITA elements and attributes to
iiRDS classes and properties, see Metadata extraction on page 6.

The plugin has the following basic characteristics:

• Based on DITA 1.3
• Supports DITA content in XML format.
• Provides the new transformation type iirds.
• Extends the HTML5 plugin.
• Parameters of the HTML5 transformation can be used to integrate custom HTML formatting.
• Resulting iiRDS packages conform to version 1.2, unrestricted, of the iiRDS standard.
• iiRDS metadata is generated based on default metadata elements and attributes in DITA.

The plugin uses extension points provided by the DITA-OT to implement its functionality. Custom parameters and
new extension points are provided that can be used to further customize the functionality of this plugin.

Note: DITA 2.0 content, including lightweight DITA in other formats than XML, are not yet supported.
Transformations of such content may still work, but this is not guaranteed.

Requirements

This plugin was developed and tested with DITA-OT 3.7.3. To guarantee that this plugin works, the following
versions are required:

• DITA-OT 3.7.x
• Java 1.8.x or higher

The plugin can be used with a default version of the DITA-OT or a customized DITA-OT version with specialized
document type definitions and modified transformation scenarios.

https://www.iirds.org

 | Install the iiRDS plugin offline | 4

Install the iiRDS plugin offline

The iiRDS plugin can be installed offline from a ZIP archive or online from the DITA-OT registry or the https://
iirds.org website. This topic describes the offline installation.

The org.iirds.dita.package-1.0.0.zip archive is available on your local computer. The path to the
sources is available at https://www.iirds.org.

1. In the plugins directory for your DITA-OT installation, create a new directory org.iirds.dita.package
2. switch to the created directory and unpack the org.iirds.dita.package-1.0.0.zip archive.
3. In the bin directory of your DITA-OT installation, open a command-line client.
4. In the command-line client, run dita install -v.

The org.iirds.dita.package plugin is installed in your DITA-OT.

You can build iiRDS packages from your DITA content.
Related information
https://www.dita-ot.org/3.7/topics/plugins-installing

Install the iiRDS plugin from the DITA-OT registry

The iiRDS plugin can be installed offline from a ZIP archive or online from the DITA-OT registry. This topic
describes the online installation.

Your computer is connected to the internet.

1. In the bin directory of your DITA-OT installation, open a command-line client.
2. In the command-line client, run dita install org.iirds.dita.package.

The org.iirds.dita.package plugin is installed in your DITA-OT.

You can build iiRDS packages from your DITA content.
Related information
https://www.dita-ot.org/3.7/topics/plugins-installing

Build and check an iiRDS package

You can use the DITA-OT to build an iiRDS package for a DITA map or a single topic. The output directory will
contain the generated iiRDS file with the extension .iirds.

1. In the bin folder of your DITA-OT installation, open a command-line client.
2. In the command-line client, enter the dita command to transform your DITA map or topic using the iirds

transtype.

Example: dita --input myContent.ditamap --o out -f iirds

You can apply conditional filtering and use additional parameters as needed.

An iiRDS package with the following file name is created in the output directory:
<file_name_of_ditamap>.iirds.

3. Verify that the iiRDS package contains the desired result:
a) Use your ZIP tool to extract the content from the iiRDS file. If necessary, change the file extension to .zip

first.

https://iirgs.org
https://iirgs.org
https://www.iirds.org
https://www.dita-ot.org/3.7/topics/plugins-installing
https://www.dita-ot.org/3.7/topics/plugins-installing

 | Architecture | 5

b) In the subfolder META-INF, open the file metadata.rdf and check if the iiRDS metadata contains the
expected values from your DITA content.

c) In the subfolder content, open the file index.html in a browser and check whether the HTML content is
as expected.

If the iiRDS package does not contain the expected result, you can try one of the following:

• If content is missing or you have unwanted content, check your conditional processing attributes.
• If the iiRDS metadata is not what you expected, check the metadata mapping topic to find out why. In case you

need a different outcome, you need to customize the metadata extraction.
• If your HTML does not look the way you want, try to use the properties of the HTML5 transformation.

Tip: Integrate the configured transformation into your editor of choice.

Tip: Use the iiRDS Validation Tool to check the integrity of the generated iiRDS package.

Related concepts
Metadata extraction on page 6
Related tasks
Customize metadata extraction on page 12
You can add a customized Java library for metadata extraction that implements the IirdsMetadataHandler
interface.

Customize HTML5 output on page 13
The iiRDS plugin allows you to customize the HTML5 content of the iiRDS package.

Architecture

Once the iiRDS plugin has been installed in the DITA-OT, you can use the plugin to generate iiRDS packages from
your DITA map. The processing steps are described in the following figure:

https://www.iirds.org/tools/validation-tool

 | Architecture | 6

Figure 1: Processing steps of the iiRDS plugin

In detail, this means the following:

• The default preprocessing by the DITA-OT is performed. During the preprocessing, references are resolved,
the DITA mechanisms for inheriting metadata from parent nodes are applied and the DITA content is filtered, if
required. For details, see https://www.dita-ot.org/dev/reference/preprocessing.

• iiRDS metadata is extracted from the preprocessed XML and the RDF file for the iiRDS package is generated. For
details, see Metadata extraction on page 6.

• The default HTML5 transformation is applied to the preprocessed XML. The parameters of this transformation
can be used to customize the generated HTML. For details, see Customize HTML5 output on page 13.

• The HTML content and the RDF file are packed in an iiRDS container file that can be imported in any application
that supports iiRDS 1.2.

Metadata extraction
The iiRDS plugin comes with a number of predefined metadata handlers to extract metadata from DITA and map
them to iiRDS metadata. The iiRDS plugin can process DITA maps or individual topics.

In the RDF file with the iiRDS metadata, the plugin creates the following RDF resources:

• An iirds:Package and an iirds:Document for the root DITA map, if available. The
iirds:DocumentType is set to iirds:OperatingInstruction.

• An iirds:Topic for each topic in a DITA map or for a single DITA topic. For each topic, an additional
iirds:InformationObject is generated.

In addition to the information units, the plugin creates a directory of the structure of the DITA map, where each entry
in the index.html of the resulting HTML output is represented by an iirds:DirectoryNode.

https://www.dita-ot.org/dev/reference/preprocessing

 | Architecture | 7

By default, iiRDS metadata is extracted from the attributes of specific elements or from the text of specific elements.
See Metadata mapping on page 7 for a detailed description of the mapping from DITA content to iiRDS and
Behavior of the default metadata handler on page 9 to understand how the metadata is mapped.

Metadata mapping
The following table describes how DITA elements and attributes are mapped to iiRDS resources in the RDF file of the
iiRDS package. If nothing else is stated, available metadata is mapped to iiRDS:Document and iiRDS:Topic
in the RDF file. The mapping also applies to any specializations of the listed elements and attributes, unless a specific
mapping is provided for the specialized type.

Table 1: Mapping of DITA to iiRDS metadata

DITA iiRDS RDF Comment

<ditamap> iirds:Document with document type
iirds:OperatingInstructions

All DITA maps are treated as
operating instructions because DITA
does not provide a document type by
default.

<topic>, <task>,
<concept>,
<reference>

iirds:Topic with topic type set
to iirds:GenericConcept,
iirds:GenericTask,
iirds:GenericConcept,
iirds:GenericReference

Topic types are derived from
the @class attribute of the
corresponding topic. Specialized
topics fall back to the most basic
class.

<shortdesc> iirds:Topic > iirds:has-abstract Content of topic-level short
description is used as abstract
property. If <shortdesc> is
wrapped in <abstract> and
multiple <shortdesc> elements
are present, only the first short
description is evaluated.

Note:

Short descriptions on map level are
not evaluated. The DITA standard
defines that short descriptions should
be copied from topic references to
the corresponding topics during
preprocessing, but currently this is
not the case with DITA-OT 3.7.4.

<title> iirds:title <title> elements of root map and
topic roots are used.

Other <title> elements are not
evaluated, for example, section or
table titles.

@xml:lang iirds:language Language attribute of root map or
topic root is used.

 | Architecture | 8

DITA iiRDS RDF Comment

<prodname> or
@product

iirds:ProductVariant All applicable values of
<prodname> elements and
@product attributes from the root
map and topics are used.

@audience or
(<audience>
with @type and/or
@experiencelevel)

iirds:Role and iirds:Skilllevel @audience attribute of root
map or topic root is mapped to
iiRDS:Role. For <audience>,
the content of @type is
mapped to iiRDS:Role and
@experiencelevel is mapped to
iiRDS:SkillLevel.

<component> iirds:Component <component> elements of root
map and topic root are used.

<copyright> with
@year and @holder

iirds:rights <copyright> elements of root
map and topic root are used.

<created> with
@date

iirds:dateOfCreation @date attribute of created
element of root map or topic root is
used.

<revised> with
@modified

iirds:dateOfLastModification and
iirds:dateOfStatus

@modified attribute of created
element of root map or topic root is
used.

<created> or
revised with
@golive

iirds:datefOfEffect @golive attribute of created or
revised element of root map or
topic root is used.

If both <created> and
<revised> with @golive are
present, then the latest <revised>
value is used.

<created> or
<revised> with
@expiry

iirds:datefOfExpiry @expiry attribute of created or
revised element of root map or
topic root is used.

If both <created> and
<revised> with @expiry are
present, then the latest <revised>
value is used.

<topichead> iirds:DirectoryNode <topichead> elements are title-
only entries in a navigation map.
Therefore, they do not have an
iirds:Topic equivalent, but
they are included as a directory
node. The @navtitle attribute or
<navtitle> element becomes the
label of the directory node.

 | Architecture | 9

DITA iiRDS RDF Comment

<navtitle> iirds:DirectoryNode <navtitle> elements from
<topicref> elements,
<topichead> elements, or from
a topic are used as labels for the
corresponding iiRDS directory
nodes.

Related concepts
Unique identifiers on page 11

Behavior of the default metadata handler
If an iiRDS package generated from DITA content does not contain the expected metadata, note the following about
the behavior of the metadata handler in the iiRDS plugin:

• The metadata handler extracts the metadata that is present in the preprocessed XML. The DITA standard defines
which metadata is propagated from maps to topics or gets inherited from parent topics. The DITA standard also
defines whether multiple values for the same metadata element or attribute are merged into a single value or
whether multiple values can be aggregated in a topic. To change this behavior, implement a custom metadata
handler.

• The metadata handler processes attribute values as they come. If you use a subjectscheme map to control attribute
values and this subjectscheme map contains navigation titles with verbose labels for the attribute values, then the
resulting RDF will only contain the attribute value. Example: A subject scheme defines the value "product-a" for
the @product attribute. "product-a" corresponds to the product Name "Awesome Product". The RDF will contain
an instance of iiRDS:Product = "product-a". To change this behavior, implement a custom metadata
handler.

• Metadata values are often language-dependent. Which product name are usually the same in any language,
metadata such as component names or user roles differ from language to language. The plugin has no way of
knowing the component "engine" (EN) is the same as the component "Motor" (DE). Therefore, the metadata
entries for this component differ in the English and the German iiRDS package even if they mean the same
object in the real world. If you need to have the same iiRDS metadata values across languages, you either need
to use controlled metadata values in the same language or implement a custom metadata handler that performs an
additional processing step during which the values are mapped and harmonized.

To find out how a custom metadata handler can be used with the iiRDS plugin, see Customize metadata extraction on
page 12.

Plugin parameters
The following command-line parameters are provided by the iiRDS plugin:

--iirds.contentpath

Defines the name of the folder in the iiRDS package containing all content files. When not set,
content is used.

Example: --iirds.contentpath=files

--iirds.metadatahandler

Defines iiRDS metadata handlers for metadata extraction from DITA. When not set, all known
iiRDS metadata handlers are applied. The parameter value is a + separated list of iiRDS metadata
handler names. When a list is provided, then only the listed metadata handlers are used. Priority of
the handlers is defined by the order of the list from left to right.

 | Architecture | 10

The following example extracts metadata only for shortdes and prodname DITA elements: --
iirds.metadatahandler=shortdesc+prodname.

The following metadata handlers are valid default list values. The default list values can be
combined with custom metadata handlers.:

shortdesc Sets iirds:has-abstract to the value of
the DITA shortdesc element.

prodname Sets iirds:relates-to-product-
variant to the value of the DITA prodname
element.

component Sets iirds:relates-to-component to
the value of the DITA component element.

product-p Sets iirds:relates-to-product-
variant to the value of the DITA product
attribute on the root element.

critdates Sets iirds:dateOfLastModification,
iirds:dateOfCreation,
iirds:dateOfEffect, and
iirds:dateOfExpiry to the value of
the DITA child elements of the critdates
element.

copyright Sets iirds:rights to the value of the DITA
copyright element.

audience Sets iirds:iirds:relates-to-
qualification to the value of the DITA
audience element.

audience-p Sets iirds:iirds:relates-to-
qualification to the value of the DITA
audience attribute on the root element.

default Applies all metadata handlers. Allows to
combine custom metadata handlers with the
default handlers.

--iirds.irihandler

Defines which IRI handlers to be used for assigning IRIs to metadata, information units and
information objects. The parameter value is a + separated list of IRI handler names. Priority of the
handlers is defined by the order of the list from left to right.

The following example combines a custom IRI handler with the default IRI handler: --
iirds.irihandler=customirihandler+default.

Related tasks
Customize metadata extraction on page 12
You can add a customized Java library for metadata extraction that implements the IirdsMetadataHandler
interface.

Customize IRI generation on page 13
You can add a customized Java library for IRI generation that implements the IRIHandler interface.

 | Customization | 11

Unique identifiers
To exchange metadata between different systems and map content from one source or language to content from a
different source or language, stable and unique identifiers are required. In iiRDS, topics with different metadata or
content must have different unique identifiers.

iiRDS metadata is provided as RDF, which uses Internationalized Resource Identifiers (IRIs), the internationalized
form of Uniform Resource Identifiers (URIs). DITA does not use IRIs so that unique and stable IRIs have to be
derived from the DITA content. Because topic IDs are not unique in all contexts, they cannot be used as IRIs on their
own. For example, the same topic may have a different content after conditional filtering has been applied. Therefore,
iiRDS topics that are generated from the same source but with different conditional filters, require different IRIs.

The following mechanisms apply:

• The IRI of each iirds:Topic is consists of the @id value of the topic and a hash of the content. The hash is
generated after preprocessing and before rendering. The hash is stable so that the same value is generated with
each call of the iiRDS transformation, provided that the topic content has not changed.

• The IRI of the iirds:Document consists of the @id value of the DITA map and a hash of the content. The
hash is generated after preprocessing and before rendering. The hash is stable so that the same value is generated
any with each call of the iiRDS transformation, provided that the map content has not changed.

If a DITA map has no @id value, then a UUID is generated and used as the IRI of the iirds:Document. This
UUID is not identical with each call of the iiRDS transformation.

• For each iirds:InformationUnit, an iirds:InformationObject is created. This
iirds:InformationObject has an IRI, which is derived from the topic ID. All information units with
the same @id value in DITA have the same iirds:is-version-of property that refers to this information
object.

• The IRI of the iirds:Package is a generated UUID.

In addition to this default behavior, the iiRDS plugin provides an extension point that allows to implement other
mechanisms for assigning IRIs, for example, to include an additional lookup from other data sources or specialized
attributes.

Related concepts
IRI and metadata handlers on page 12

Customization

The iiRDS plugin can be customized to your specific requirements. The plugin provides the following ways of
customization:

• DITA-OT Ant extension points
• Java interface for metadata extraction and IRI generation
• HTML5 DITA-OT build parameters

DITA-OT Ant extension points

The iiRDS plugin provides the following extension points that use Ant targets:

iirds.extractMetadata.pre Runs an Ant target after the DITA-OT preprocessing and
before the iiRDS metadata extraction.

iirds.extractMetadata.post Runs an Ant target after the iiRDS metadata extraction.
Can be used to access the metadata.rdf file.

iirds.package.pre Runs an Ant target after the HTML was built and before
the iiRDS package is generated.

https://www.ietf.org/rfc/rfc2396.txt

 | Customization | 12

For details on adding ANT targets to extension points, see https://www.dita-ot.org/3.7/topics/plugin-antpreprocess.

Java interfaces

The iiRDS plugin provides the following Java interfaces:

IirdsMetadataHandler Allows to implement project-specific metadata extraction
for all RDF resources from DITA content.

IRIHandler Allows to implement project-specific IRI generation for
all RDF resources.

For details, see Customize metadata extraction on page 12 and Customize IRI generation on page 13.

HTML5 build parameters

The iiRDS plugin extends the HTML5 transtype and supports the DITA-OT HTML5 parameters. For example, you
can add project-specific CSS, inject XML into the HTML5 header element, or use custom XSLT.

For an example, see Customize HTML5 output on page 13.

IRI and metadata handlers
The iiRDS plugin supports multiple ways to extract metadata out of DITA content and generate IRIs for RDF
resources. Metadata is extracted by the plugin's metadata handlers. IRIs are generated by the plugin's IRI handlers.

When the DITA files are processed, the iiRDS plugin tries to extract metadata and generate an IRI based on a
sequence of metadata and IRI handlers. The sequence of handlers defines the priority of the handlers. When building
iiRDS packages, the iirds.metadatahandler and iirds.irihandler parameters specify the sequence of
handlers. When a parameter is not set, the default fallback is used.

When a handler does not provide an IRI, then the next handler in the sequence is called. As a default fallback, the
iiRDS plugin generates unique UUIDs as IRIs for topics, documents, metadata, and information objects.

Custom handlers can be built by extending the Java interfaces IirdsMetadataHandler and IRIHandler.

Note:

When a metadata handler extracts metadata for a topic which can only be assigned once and another custom metadata
handler in the sequence extracts conflicting metadata, then the custom metadata handler has to resolve the conflict.

Related concepts
Unique identifiers on page 11
Related reference
Plugin parameters on page 9

Customize metadata extraction
You can add a customized Java library for metadata extraction that implements the IirdsMetadataHandler
interface.

• You have a Java library that implements the Service Provider Interface
org.iirds.dita.ot.plugin.spi.IirdsMetadataHandler and
org.iirds.dita.ot.plugin.spi.IirdsMetadataHandlerProvider. See https://docs.oracle.com/
javase/8/docs/technotes/guides/jar/jar.html#Service_Provider.

• Your Java library is integrated into the DITA Open Toolkit by extending the dita.conductor.lib.import
extension point. See https://www.dita-ot.org/3.7/topics/plugin-javalib.

• Your content contains metadata for your metadata handler to process.

https://www.dita-ot.org/3.7/topics/plugin-antpreprocess
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider
https://www.dita-ot.org/3.7/topics/plugin-javalib

 | Customization | 13

A project wants to build an iiRDS package using a project-specific metadata extraction to anticipate specialized DITA
elements.

1. In the bin folder of your DITA-OT installation, open a command-line client.
2. In the command-line client, enter the dita command to transform your DITA map or topic using the iirds

transtype and the iirds.metadatahandler parameter to use your metadata handler.
Example: dita --input myContent.ditamap --o out -f iirds --
iirds.metadatahandler=YourMetadataHandler+default

An iiRDS package with the following file name is created in the output directory:
<file_name_of_ditamap>.iirds. The iiRDS package contains metadata based on the project-specific
requirements.

Customize IRI generation
You can add a customized Java library for IRI generation that implements the IRIHandler interface.

• You have a Java library that implements the Service Provider Interface
org.iirds.dita.ot.plugin.spi.IRIHandler and implements and registers
org.iirds.dita.ot.plugin.spi.IRIHandlerProvider. See https://docs.oracle.com/javase/8/docs/
technotes/guides/jar/jar.html#Service_Provider.

• Your Java library is integrated into the DITA Open Toolkit by extending the dita.conductor.lib.import
extension point. See https://www.dita-ot.org/3.7/topics/plugin-javalib.

• Your provide IRI mappings if required by your IRI handler.

A project wants to build an iiRDS package using a project-specific IRI mapping. The IRI mapping is provides as a
CSV file. The CSV file is stored next to the DITA map.

1. In the bin folder of your DITA-OT installation, open a command-line client.
2. In the command-line client, enter the dita command to transform your DITA map or topic using the iirds

transtype and the iirds.irihandler parameter to use your IRI handler.
Example: dita --input myContent.ditamap --o out -f iirds --
iirds.irihandler=YourIriCsvHandler+default

An iiRDS package with the following file name is created in the output directory:
<file_name_of_ditamap>.iirds. The iiRDS package contains IRIs based on the project-specific
requirements.

Customize HTML5 output
The iiRDS plugin allows you to customize the HTML5 content of the iiRDS package.

• Custom XSLT is available.
• Custom CSS is available.

A project wants to generate an iiRDS package that contains custom HTML5 content that uses the project's CSS.

1. In the bin folder of your DITA-OT installation, open a command-line client.
2. In the command-line client, enter the dita command to transform your DITA map or topic using the iirds

transtype and the HTML5 parameters to use your CSS and XSLT.
Example: dita --input myContent.ditamap --o out -f iirds --
args.cssroot=absolutPathToMyCssFolder --args.css=myCustom.css
--args.copycss=yes --args.csspath=outputCssFolderName --
args.xsl=relativePathToMyCustomStylesheet.xsl

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider
https://www.dita-ot.org/3.7/topics/plugin-javalib

 | License and contact information | 14

An iiRDS package with the following file name is created in the output directory:
<file_name_of_ditamap>.iirds. The iiRDS package contains HTML files generated by the project's XSLT
and using the project's CSS.

License and contact information

The plugin is licensed under the open-source license „Apache License, Version 2.0“, including the accompanying
documentation and its source code. For details, see https://www.apache.org/licenses/LICENSE-2.0.

The plugin was developed for the iiRDS consortium by Empolis Information Management GmbH, testing and
documentation was done by parson AG.

In case of questions, contact the iiRDS consortium, see https://www.iirds.org/contact.

https://www.apache.org/licenses/LICENSE-2.0
https://empolis.com
https://parson-europe.com
https://www.iirds.org/contact

	Contents
	Introduction
	Requirements
	Install the iiRDS plugin offline
	Install the iiRDS plugin from the DITA-OT registry
	Build and check an iiRDS package
	Architecture
	Metadata extraction
	Metadata mapping
	Behavior of the default metadata handler
	Plugin parameters
	Unique identifiers

	Customization
	IRI and metadata handlers
	Customize metadata extraction
	Customize IRI generation
	Customize HTML5 output

	License and contact information

