

IIRDS REQUEST API
HOW TO USE THE API

2024-05-27

EMPOLIS | ICMS iiRDS Request 2

Content

1 About the API .. 3

2 Overview of the End Points .. 3

3 Using the API ... 4

3.1 OpenAPI Specification ... 5
3.2 Display of an OpenAPI Specification ... 5
3.3 Parameters .. 5
3.4 Requirements .. 5
3.5 Querying iiRDS Information .. 5
3.6 Error Handling ... 6
3.7 Example Requests .. 6

4 Applied Terminology ... 8

5 iiRDS-API Boilerplate .. 9

6 API Security ... 9

7 Compliance ... 10

1 About the API

This documentation provides additional information to the iiRDS API specification. The API enables to

access data via iiRDS, catering to increasing business demands. It will offer system providers and

programmers a standardized interface, ensuring modern and state-of-the-art functionality to support

seamless integration.

The iiRDS API offers extended capabilities by covering a broad range of use cases and allows developers

to choose the most suitable query method for their specific needs. The iiRDS API specific query

language uses JSON AST (abstract syntax tree) constructs to query the requested data. As JSON is

supported by most programming languages it can be easily integrated into different environments,

which facilitates interoperability. The query language supports hierarchical queries, selection of returned

properties, and ordering of results. It tries to find balance between simplicity of implementation and

feature richness. As iiRDS is based on RDF it would be logical to use SPARQL as the query language.

Implementing SPARQL on non-native RDF applications could set a big obstacle to implementors.

However, an optional end point for SPARQL queries is part of the API.

As JSON is natively supported in JavaScript, it is a common standard for use in web-based applications

and APIs. It facilitates the diverse applicability of the API specification in various environments. In

addition, the JSON query is extensible and allows the definition of custom data structures and formats

should this be required by iiRDS updates or specific extensions. This makes it possible to adapt the

query to specific requirements. There is a large community of developers who support JSON due to its

simplicity, flexibility, and widespread use. This results in the availability of numerous tools, libraries, and

resources that facilitate the process of working with JSON.

For the same reasons, JSON-LD (see https://json-ld.org/) is used as the default response format. JSON-

LD is a lightweight Linked Data format, building upon the widely used JSON format. It facilitates the

readability and writing of data for humans while enabling the representation of graph-based data. Ideal

for programming environments and RESTful Web services, JSON-LD offers a seamless approach to

representing and exchanging data. Moreover, there is a defined serialization of RDF to JSON-LD.

Nevertheless, implementers are permitted to choose to support native RDF-XML as a format for query

results.

2 Overview of the End Points

While there are specific endpoints, a separate endpoint was not created for each iiRDS class to query

specific data. This maintains the independence of the iiRDS specification regarding iiRDS versions. The

QUERY endpoints allow for the querying of all data and the application of filter mechanisms.

I IRDS RESOURCES

POST/api/{apiversion}/resources

Retrieve iiRDS RDF resources via a query

GET/api/{apiversion}/resources/schema

Retrieve the iiRDS schema

GET/api/{apiversion}/resources/{iri}

Retrieve an iiRDS resource by IRI

GET/api/{apiversion}/resources/informationunits/topics/{iri}

https://json-ld.org/

EMPOLIS | ICMS iiRDS Request 4

Retrieve properties of an iirds:Topic

GET/api/{apiversion}/resources/informationunits/fragments/{iri}

Retrieve properties of an iirds:Fragment

GET/api/{apiversion}/resources/informationunits/documents/{iri}

Retrieve properties of an iirds:Document

GET/api/{apiversion}/resources/informationunits/packages/{iri}

Retrieve properties of an iirds:Package

I IRDS DIRECTORY NODE

GET/api/{apiversion}/resources/informationunits/{iri}/directorynodes

Retrieve properties for all iirds:DirectoryNode that belong to a given iirds:InformationUnit

GET/api/{apiversion}/resources/directorynodes/{iri}/roots

Retrieve properties for all root level iirds:DirectoryNodes of a given iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}

Retrieve properties and object resources for an iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}/children

Retrieve properties for all children of a given iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}/parents

Retrieve properties for all parents of a given iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}/previous

Retrieve properties for the previous sibling iirds:DirectoryNode of a given iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}/next

Retrieve properties for the following sibling iirds:DirectoryNode of a given iirds:DirectoryNode

GET/api/{apiversion}/resources/directorynodes/{iri}/trees

Retrieve directory node trees of iirds:DirectoryNodes

I IRDS PACKAGE

GET/api/{apiversion}/resources/informationunits/packages/{iri}/files/{iiRDSPackageFilePath}

Retrieve a specific file from an iiRDS package

GET/api/{apiversion}/resources/package/{iri}/content

Retrieve an iiRDS Container as ZIP archive

RENDITION CONTENT

GET/api/{apiversion}/resources/informationunits/{iri}/renditions/{mimetype}/content

Retrieve the (rendition) content of a given iirds:InformationUnit in a specific format

SPARQL

POST/api/{apiversion}/sparql

Retrieve results of a SPARQL query

ADMINISTRATION

GET/api/{apiversion}/features

Retrieve supported API features

3 Using the API

Details and descriptions of the endpoints can be found in the OpenAPI specification. Further information

is described in this chapter.

EMPOLIS | ICMS iiRDS Request 5

3.1 OpenAPI Specification

An OpenAPI specification is the description of a RESTful API. It defines the structure, endpoints,

parameters, response formats and other important details of the API. The OpenAPI specification is

written in YAML format and serves as the basis for the documentation, testing and automation of the

API. (see also: https://swagger.io/specification/)

3.2 Display of an OpenAPI Specification

The OpenAPI standard allows an OpenAPI specification to be displayed as a HTML page. Swagger, the

publisher of the standard, as well as third-party providers such as ReDocly, offer free viewers for this

purpose, which are available as web applications, standalone applications or plugins within third-party

software (e.g. ReDoc, SwaggerUI).

The OpenAPI specification of the iiRDS request API is optimized for display with ReDoc, yet also

comaptible with SwaggerUI.

3.3 Parameters

The API specification requires parameters as part of requests. The following parameters are used in

various end points. There are further endpoint-specific parameters, that are described in the OpenAPI

specification.

- {iri}

An IRI is a unique identifier for resources such as topics or metadata within the iiRDS package.

IRIs enable the identification and retrieval of resources in a language-independent and globally

consistent manner. Every resource should have an IRI to identify and retrieve the resource.

- {apiversion}

The version of the API is a component that allows changes and improvements to be made to an

API while ensuring backward compatibility for existing integrations. The API versioning follows

a semantic versioning scheme consisting of a major version number, a minor version number

and a patch number (e.g. v0.0.1) in accordance to prefixed “Semantic Versioning”.

3.4 Requirements

In iiRDS, it is allowed to use blank nodes as resources. For iirds:directoryNodes to be retrievable and

requestable, it is necessary that IRIs are assigned to these nodes. As a fallback implementors can

choose to generated IRIs in the case they were not present in the original iiRDS packages.

- Each directoryNode MUST have an IRI

3.5 Querying iiRDS Information

As iiRDS is an extensible standard that has specific extensions and is constantly being developed

further, the API specification should be as universal as possible. Therefore, there are only some specific

routes. Many complex use cases can be realized by the query endpoints:

POST/api/{apiversion}/sparql → SPARQL is a common standard to query graph-based data (see also https://www.w3.org/TR/sparql11-query/)

The request body includes SPARQL queries, limited to SELECT queries. Results are returned in the native

format of the SPARQL query, which can be XML, JSON, CSV, or TSV based on the requester's accepted

https://swagger.io/specification/
https://www.w3.org/TR/sparql11-query/

EMPOLIS | ICMS iiRDS Request 6

format. Implementing this feature is optional, and implementations may support only certain result

formats.

POST /api/{apiversion}/resources?query → The documentation to this iiRDS specific query language can be found in the OpenAPI specification.

This endpoint implements querying iiRDS RDF resources. There are two variants: “native query” and

“iiRDS query”. Both return the results as JSON-LD.

• “native query” allows and implementor to provide his own query language as query interface. The

query is provided as one string.

• “iiRDS query” is a new query language, defined in JSON with a schema. It is extensible and RDF

aware. The iiRDS query supports hierarchical querying.

The iiRDS query language was designed in such a way that systems that are not natively based on RDF

can also implement search mechanisms relatively easily, as the implementation of SPARQL is

complicated.

The endpoint is designed to provide search functionality that is essential for typical iiRDS use cases.

However, it also allows for full-text search in renditions, as well as paging and sorting of results. It should

be noted that the endpoint does not claim to support all theoretically possible complex query use cases.

In the case of particularly complex searches, the use of multiple API calls may become necessary to

achieve the desired outcome.

3.6 Error Handling

The API uses Standard HTTP status codes commonly used in APIs.

- 200 Successful operation.

- 400 Invalid parameters provided with request.

- 404 The requested resource could not be found.

- 500 Internal server error.

3.7 Example Requests

Use Case What are the properties to the resource with the IRI http://myCompany.com/versions/io_1/de/1?

Request GET/api/{apiversion}/resources/http%3A%2F%2FmyCompany.com%2Fversions%2Fio_1%2Fde%2F1

Result {

 "@context": {

 "iirds": "http://iirds.tekom.de/iirds#",

 "iirdsMch": "http://iirds.tekom.de/iirds/domain/machinery#",

 "iirdsReq": "http://iirds.org/schema/iirds-request#",

 "iirdsSft": "http://iirds.tekom.de/iirds/domain/software#",

 "pifan": "https://www.i4icm.de/pifan#",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "vcard": "http://www.w3.org/2006/vcard/ns#"

 },

 "@graph": [

 {

 "@id": "http://myCompany.com/versions/io_1/de/1",

 "@type": "iirds:Topic",

 "iirds:dateOfCreation": {

 "@type": "xsd:dateTimeStamp",

 "@value": "2019-01-09T09:52:00+01:00"

 },

 "iirds:has-content-lifecycle-status": {

 "@id": "_:N89ddb41492b04fa998c2bfe727eceb69"

 },

 "iirds:has-rendition": {

 "@id": "_:N049bb0f348f745dc8098c2e045989a1d"

 },

 "iirds:has-topic-type": {

 "@id": "iirds:GenericTask"

 "iirds:is-part-of-package": {

 "@id": "http://myCompany.com/iiRDS-parent"

 },

 "iirds:language": "en",

 "iirds:relates-to-component": [

 {

 "@id": "https://www.i4icm.de/pifan#PIFan"

 },

 {

 "@id": "https://www.i4icm.de/pifan#Rotor"

 }

],

 "iirds:relates-to-product-lifecycle-phase": [

 {

 "@id": "iirds:Maintenance"

 },

 {

 "@id": "iirdsMch:Cleaning"

 }

],

 "iirds:relates-to-product-variant": {

 "@id": "https://www.i4icm.de/pifan#X5-DH2"

 },

 "iirds:relates-to-qualification": [

 {

 "@id": "https://www.i4icm.de/pifan#ServiceTechnician"

 },

EMPOLIS | ICMS iiRDS Request 7

 },

 "iirds:is-applicable-for-document-type": [

 {

 "@id": "iirds:RepairInstructions"

 },

 {

 "@id": "iirds:OperatingInstructions"

 },

 {

 "@id": "iirds:MaintenanceInstructions"

 },

 {

 "@id": "iirds:QuickGuide"

 }

],

 {

 "@id": "https://www.i4icm.de/pifan#Operator"

 }

],

 "iirds:rights": "Content Copyright (c) 2015, PI-Fan

Project\niiRDS Implementation Copyright (c) 2019, iiRDS

Consortium\n\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER\nLIABILITY, WHETHER IN AN ACTION aOF CONTRACT, TORT OR

OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.",

 "iirds:title": "Cleaning the rotor"

 },

 {

 "@id": "_:N89ddb41492b04fa998c2bfe727eceb69",

 "@type": "iirds:ContentLifeCycleStatus",

 "iirds:dateOfStatus": {

 "@type": "xsd:dateTimeStamp",

 "@value": "2019-08-11T09:52:00+01:00"

 },

 "iirds:has-content-lifecycle-status-value": {

 "@id": "iirds:Reviewed"

 },

 "iirds:relates-to-party": {

 "@id": "http://myCompany.com/supplier/SupCo"

 }

 },

 {

 "@id": "_:N049bb0f348f745dc8098c2e045989a1d",

 "@type": "iirds:Rendition",

 "iirds:format": "application/xhtml+xml",

 "iirds:source":

"content/6_Maintenance/6_1_rotor_cleaning.xhtml"

 }

]

}

Use Case How is the rotor cleaned by the X5-DH2?

Request

POST/api/{apiversion}/resources?query

"query": {

 "type": "iirdsquery",

 "context": {

 "iirds": "http://iirds.tekom.de/iirds#",

 "pifan": "https://www.i4icm.de/pifan#",

 "iirdsMch":

"http://iirds.tekom.de/iirds/domain/machinery#"

 },

 "resource": [

 {

 "type": [

 "iirds:InformationUnit"

],

 "asResult": true,

 "predicates": {

 "iirds:relates-to-product-variant": {

 "resource": [

 {

 "id": "pifan:X5-DH2",

 "asResult": false

 }

]

 },

 "iirds:relates-to-component": {

 "resource": [

 {

 "id": "pifan:Rotor",

 "asResult": false

 }

]

 },

 "iirds:relates-to-product-lifecycle-phase": {

 "resource": [

 {

 "id": "iirdsMch:Cleaning",

 "asResult": false

 }

]

 }

 }

 }

]

 }

EMPOLIS | ICMS iiRDS Request 8

Result {

 "@context": {

 "iirds": "http://iirds.tekom.de/iirds#",

 "iirdsMch":

"http://iirds.tekom.de/iirds/domain/machinery#",

 "iirdsReq": "http://iirds.org/schema/iirds-request#",

 "iirdsSft":

"http://iirds.tekom.de/iirds/domain/software#",

 "pifan": "https://www.i4icm.de/pifan#",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "vcard": "http://www.w3.org/2006/vcard/ns#"

 },

 "@graph": [

 {

 "@type": "iirdsReq:QueryResults",

 "iirdsReq:count": "1",

 "iirdsReq:offset": "0",

 "iirdsReq:results": {

 "@type": "rdf:Seq",

 "rdf:_1": {

 "iirdsReq:resource": {

 "@id": "http://myCompany.com/versions/io_1/de/1"

 },

 "iirdsReq:score": "1.0"

 }

 }

 },

 {

 "@id": "http://myCompany.com/versions/io_1/de/1",

 "@type": "iirds:Topic",

 "iirds:dateOfCreation": {

 "@type": "xsd:dateTimeStamp",

 "@value": "2019-01-09T09:52:00+01:00"

 },

 "iirds:has-content-lifecycle-status": {

 "@id": "_:N89ddb41492b04fa998c2bfe727eceb69"

 },

 "iirds:has-rendition": {

 "@id": "_:N049bb0f348f745dc8098c2e045989a1d"

 },

 "iirds:has-topic-type": {

 "@id": "iirds:GenericTask"

 },

 "iirds:is-applicable-for-document-type": [

 {

 "@id": "iirds:RepairInstructions"

 },

 {

 "@id": "iirds:OperatingInstructions"

 },

 {

 "@id": "iirds:MaintenanceInstructions"

 },

 {

 "@id": "iirds:QuickGuide"

 }

],

 "iirds:is-part-of-package": {

 "@id": "http://myCompany.com/iiRDS-parent"

 },

 "iirds:language": "en",

 "iirds:relates-to-component": [

 {

 "@id": "https://www.i4icm.de/pifan#PIFan"

 },

 {

 "@id": "https://www.i4icm.de/pifan#Rotor"

 }

],

 "iirds:relates-to-product-lifecycle-phase": [

 {

 "@id": "iirds:Maintenance"

 },

 {

 "@id": "iirdsMch:Cleaning"

 }

],

 "iirds:relates-to-product-variant": {

 "@id": "https://www.i4icm.de/pifan#X5-DH2"

 },

 "iirds:relates-to-qualification": [

 {

 "@id":

"https://www.i4icm.de/pifan#ServiceTechnician"

 },

 {

 "@id": "https://www.i4icm.de/pifan#Operator"

 }

],

 "iirds:rights": "Content Copyright (c) 2015, PI-Fan

Project\niiRDS Implementation Copyright (c) 2019, iiRDS

Consortium\n\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION aOF CONTRACT,

TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.",

 "iirds:title": "Cleaning the rotor"

 },

 {

 "@id": "_:N89ddb41492b04fa998c2bfe727eceb69",

 "@type": "iirds:ContentLifeCycleStatus",

 "iirds:dateOfStatus": {

 "@type": "xsd:dateTimeStamp",

 "@value": "2019-08-11T09:52:00+01:00"

 },

 "iirds:has-content-lifecycle-status-value": {

 "@id": "iirds:Reviewed"

 },

 "iirds:relates-to-party": {

 "@id": "http://myCompany.com/supplier/SupCo"

 }

 },

 {

 "@id": "_:N049bb0f348f745dc8098c2e045989a1d",

 "@type": "iirds:Rendition",

 "iirds:format": "application/xhtml+xml",

 "iirds:source":

"content/6_Maintenance/6_1_rotor_cleaning.xhtml"

 }

]

}

4 Applied Terminology

The terminology utilized in the API specification is based on that of RDF. The metadata file in iiRDS is

written in RDF, which results in the use of a standardized terminology. Furthermore, the terminology is

also common in JSON-LD, as it also represents graph-based data.

The following terms are used frequently in the specification:

- A resource denotes a subject or object of an RDF statement. The term can be used

synonymous with "entity" as it is also used in the RDF Semantics specification.

- A property is the predicate of an RDF statement. It covers all iirdsRelations and iirdsAttributes.

EMPOLIS | ICMS iiRDS Request 9

5 iiRDS-API Boilerplate

There are various applications that allow a REST API server hull to be generated based on an OpenAPI

specification. Such a server hull implements the basic functionality of a REST API server with the

specific routes/endpoints of the OpenAPI specification and serves as a starting point for implementing

the logic of the corresponding endpoints. Depending on the application, various runtime environments

and corresponding REST server frameworks are supported (e.g. NodeJS/Express, Go/Chi, Python/Flask,

Java/JAX-RS etc.).

A server hulls can be generated using the Postman application (https://www.postman.com/) or

swagger (https://editor-next.swagger.io/).

6 API Security

API security ensures secure access to your API endpoints while also maintaining usability.

The iiRDS Request specification purposely does not address authentication and authorization at all. It

leaves it up to the implementor of the API. Thus, implementing security might add additional HTTP

request headers, request parameters or requests requirements. It is recommended to just use HTTP

header fields for the defined requests.

Here are some common approaches:

- OAuth 2.0: OAuth 2.0 is an industry-standard protocol for authorization. It enables third-party

applications to access a user's data without exposing their credentials. OAuth 2.0 provides

various grant types such as Authorization Code Grant, Implicit Grant, Client Credentials Grant,

and Resource Owner Password Credentials Grant.

- API Keys: API keys are simple strings that clients include in their API requests to authenticate

themselves. These keys are typically long, randomly generated strings that are associated with

a specific user or application. API keys are straightforward to implement but should be used in

conjunction with other security measures, as they can be more susceptible to abuse if leaked.

- HTTP Basic Authentication: This method involves including a username and password in the

HTTP header of each request. While simple to implement, it is less secure than other methods

because credentials are transmitted with each request. It is recommended to use HTTPS when

using basic authentication to encrypt the credentials.

- Token-based authentication and authorization: In this approach, upon successful

authentication, the server provides the client with a token (such as JWT or a session token). The

client then includes this token in subsequent requests to authenticate itself. Tokens can have

expiration times and can be invalidated if necessary.

It is recommended to choose either tokens or API keys mechanisms to keep the API simple in use and

to transport the tokens or API keys via HTTP-header fields over HTTP to the server. Read

https://swagger.io/docs/specification/authentication/ for hints about implementing API security.

When implementing API security, it's essential to consider factors such usability, scalability, and

regulatory compliance. Additionally, regularly review and update your authentication mechanisms to

address new threats and vulnerabilities.

https://www.postman.com/
https://editor-next.swagger.io/
https://swagger.io/docs/specification/authentication/

EMPOLIS | ICMS iiRDS Request 10

7 Compliance

Following the guidelines and structures defined by the OpenAPI specification for designing and

documenting the API ensures consistency and interoperability.

- All endpoints must be implemented to be compliant, only the optional features do not have to

be implemented.

- The API must cover all requirements from the specification of the endpoints.

- It must be ensured that responses producing iiRDS RDF are compliant with the iiRDS

specification.

By following these guidelines, you will achieve a compliant and standardized implementation.

